全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Standing waves for a class of Schr?dinger-Poisson equations in ${\mathbb{R}^3}$ involving critical Sobolev exponents

Full-Text   Cite this paper   Add to My Lib

Abstract:

We are concerned with the following Schr\"odinger-Poisson equation with critical nonlinearity: \[\left\{\begin{gathered} - {\varepsilon ^2}\Delta u + V(x)u + \psi u = \lambda |u{|^{p - 2}}u + |u{|^4}u{\text{in}}{\mathbb{R}^3}, \hfill - {\varepsilon ^2}\Delta \psi = {u^2}{\text{in}}{\mathbb{R}^3},{\text{}}u > 0,{\text{}}u \in {H^1}({\mathbb{R}^3}), \hfill \end{gathered} \right. \] where $\varepsilon > 0$ is a small positive parameter, $\lambda > 0$, $3 < p \le 4$. Under certain assumptions on the potential $V$, we construct a family of positive solutions ${u_\varepsilon} \in {H^1}({\mathbb{R}^3})$ which concentrates around a local minimum of $V$ as $\varepsilon \to 0$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133