全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Arbitrary many positive solutions for a nonlinear problem involving the fractional Laplacian

Full-Text   Cite this paper   Add to My Lib

Abstract:

We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: \begin{equation*} \left\{\begin{array}{lll} &(-\Delta)^{s}u=\lambda u^{p}+f(u),\,\,u>0 \quad &\mbox{in}\,\,\Omega,\\ &u=0\quad &\mbox{in}\,\,\mathbb{R}^{N}\setminus\Omega,\\ \end{array}\right. \end{equation*} where $\Omega\subset \mathbb{R}^{N}$ $(N\geq 2)$ is a bounded smooth domain, $s\in (0,1)$, $p>0$, $\lambda\in \mathbb{R}$ and $(-\Delta)^{s}$ stands for the fractional Laplacian. When $f$ oscillates near the origin or at infinity, via the variational argument we prove that the problem has arbitrarily many positive solutions and the number of solutions to problem is strongly influenced by $u^{p}$ and $\lambda$. Moreover, various properties of the solutions are also described in $L^{\infty}$- and $X^{s}_{0}(\Omega)$-norms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133