全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Strong orthogonality between the Mobius function and nonlinear exponential functions in short intervals

DOI: 10.1093/imrn/rnv091

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\mu(n)$ be the M\"obius function, $e(z) = \exp(2\pi iz)$, $x$ real and $2\leq y \leq x$. This paper proves two sequences $(\mu(n))$ and $(e(n^k \alpha))$ are strongly orthogonal in short intervals. That is, if $k \geq 3$ being fixed and $y\geq x^{1-1/4+\varepsilon}$, then for any $A>0$, we have \[ \sum_{x< n \leq x+y} \mu(n) e\left(n^k \alpha \right) \ll y(\log y)^{-A} \] uniformly for $\alpha \in \mathbb{R}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133