全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Connes embedding property for quantum group von Neumann algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a compact quantum group $\mathbb G$ of Kac type, we study the existence of a Haar trace-preserving embedding of the von Neumann algebra $L^\infty(\mathbb G)$ into an ultrapower of the hyperfinite II$_1$-factor (the Connes embedding property for $L^\infty(\mathbb G)$). We establish a connection between the Connes embedding property for $L^\infty(\mathbb G)$ and the structure of certain quantum subgroups of $\mathbb G$, and use this to prove that the II$_1$-factors $L^\infty(O_N^+)$ and $L^\infty(U_N^+)$ associated to the free orthogonal and free unitary quantum groups have the Connes embedding property for all $N \ge 4$. As an application, we deduce that the free entropy dimension of the standard generators of $L^\infty(O_N^+)$ equals $1$ for all $N \ge 4$. We also mention an application of our work to the problem of classifying the quantum subgroups of $O_N^+$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133