全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Automorphisms of Higher Rank Lamplighter Groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\Gamma_d(q)$ denote the group whose Cayley graph with respect to a particular generating set is the Diestel-Leader graph $DL_d(q)$, as described by Bartholdi, Neuhauser and Woess. We compute both $Aut(\Gamma_d(q))$ and $Out(\Gamma_d(q))$ for $d \geq 2$, and apply our results to count twisted conjugacy classes in these groups when $d \geq 3$. Specifically, we show that when $d \geq 3$, the groups $\Gamma_d(q)$ have property $R_{\infty}$, that is, every automorphism has an infinite number of twisted conjugacy classes. In contrast, when $d=2$ the lamplighter groups $\Gamma_2(q)=L_q = {\mathbb Z}_q \wr {\mathbb Z}$ have property $R_{\infty}$ if and only if $(q,6) \neq 1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133