全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Mapping tori of free group automorphisms, and the Bieri-Neumann-Strebel invariant of graphs of groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $G$ be the mapping torus of a polynomially growing automorphism of a finitely generated free group. We determine which epimorphisms from $G$ to $\mathbb{Z}$ have finitely generated kernel, and we compute the rank of the kernel. We thus describe all possible ways of expressing $G$ as the mapping torus of a free group automorphism. This is similar to the case for 3--manifold groups, and different from the case of mapping tori of exponentially growing free group automorphisms. The proof uses a hierarchical decomposition of $G$ and requires determining the Bieri-Neumann-Strebel invariant of the fundamental group of certain graphs of groups.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133