全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

A Perturbation of the Dunkl Harmonic Oscillator on the Line

DOI: 10.3842/SIGMA.2015.059

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $J_\sigma$ be the Dunkl harmonic oscillator on ${\mathbb{R}}$ ($\sigma>-1/2$). For $00$, it is proved that, if $\sigma>u-1/2$, then the operator $U=J_\sigma+\xi|x|^{-2u}$, with appropriate domain, is essentially self-adjoint in $L^2({\mathbb{R}},|x|^{2\sigma} dx)$, the Schwartz space ${\mathcal{S}}$ is a core of $\overline U^{1/2}$, and $\overline U$ has a discrete spectrum, which is estimated in terms of the spectrum of $\overline{J_\sigma}$. A generalization $J_{\sigma,\tau}$ of $J_\sigma$ is also considered by taking different parameters $\sigma$ and $\tau$ on even and odd functions. Then extensions of the above result are proved for $J_{\sigma,\tau}$, where the perturbation has an additional term involving, either the factor $x^{-1}$ on odd functions, or the factor $x$ on even functions. Versions of these results on ${\mathbb{R}}_+$ are derived.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133