全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Global convergence of the Heavy-ball method for convex optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper establishes global convergence and provides global bounds of the convergence rate of the Heavy-ball method for convex optimization problems. When the objective function has Lipschitz-continuous gradient, we show that the Cesaro average of the iterates converges to the optimum at a rate of $O(1/k)$ where k is the number of iterations. When the objective function is also strongly convex, we prove that the Heavy-ball iterates converge linearly to the unique optimum.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133