全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Non-embeddability into a fixed sphere for a family of compact real algebraic hypersurfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the holomorphic embedding problem from a compact strongly pseudoconvex real algebraic hypersurface into a sphere of higher dimension. We construct a family of compact strongly pseudoconvex hypersurfaces $M_{\epsilon}$ in $\mathbb{C}^2,$ and prove that for any integer $N$, there is a number $\epsilon(N)$ with $0<\epsilon(N)<1$ such that for any $\epsilon$ with $0<\epsilon<\epsilon(N)$, $M_\epsilon$ can not be locally holomorphically embedded into the unit sphere $\mathbb{S}^{2N-1}$ in $\mathbb{C}^N.$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133