|
Mathematics 2014
Measuring logarithmic corrections to normal diffusion in infinite-horizon billiardsDOI: 10.1103/PhysRevE.90.022106 Abstract: We perform numerical measurements of the moments of the position of a tracer particle in a two-dimensional periodic billiard model (Lorentz gas) with infinite corridors. This model is known to exhibit a weak form of super-diffusion, in the sense that there is a logarithmic correction to the linear growth in time of the mean-squared displacement. We show numerically that this expected asymptotic behavior is easily overwhelmed by the subleading linear growth throughout the time-range accessible to numerical simulations. We compare our simulations to the known analytical results for the variance of the anomalously-rescaled limiting normal distributions.
|