全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Symplectic Tate homology

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a Liouville domain $W$ satisfying $c_1(W)=0$, we propose in this note two versions of symplectic Tate homology $\underrightarrow{H}\underleftarrow{T}(W)$ and $\underleftarrow{H}\underrightarrow{T}(W)$ which are related by a canonical map $\kappa \colon \underrightarrow{H}\underleftarrow{T}(W) \to \underleftarrow{H}\underrightarrow{T}(W)$. Our geometric approach to Tate homology uses the moduli space of finite energy gradient flow lines of the Rabinowitz action functional for a circle in the complex plane as a classifying space for $S^1$-equivariant Tate homology. For rational coefficients the symplectic Tate homology $\underrightarrow{H}\underleftarrow{T}(W)$ has the fixed point property and is therefore isomorphic to $H(W;\mathbb{Q}) \otimes \mathrm{Q}[u,u^{-1}]$, where $\mathbb{Q}[u,u^{-1}]$ is the ring of Laurent polynomials over the rationals. Using a deep theorem of Goodwillie, we construct examples of Liouville domains where the canonical map $\kappa$ is not surjective and examples where it is not injective.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133