全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The equivariant cohomology rings of Peterson varieties in all Lie types

DOI: 10.4153/CMB-2014-048-0

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133