全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Amoebas, Nonnegative Polynomials and Sums of Squares Supported on Circuits

Full-Text   Cite this paper   Add to My Lib

Abstract:

We completely characterize sections of the cones of nonnegative polynomials, convex polynomials and sums of squares with polynomials supported on circuits, a genuine class of sparse polynomials. In particular, nonnegativity is characterized by an invariant, which can be immediately derived from the initial polynomial. Furthermore, nonnegativity of such polynomials $f$ coincides with solidness of the amoeba of $f$, i.e., the Log-absolute-value image of the algebraic variety $\mathcal{V}(f) \subset (\mathbb{C}^*)^n$ of $f$. These results generalize earlier works both in amoeba theory and real algebraic geometry by Fidalgo, Kovacec, Reznick, Theobald and de Wolff and solve an open problem by Reznick. They establish the first direct connection between amoeba theory and nonnegativity of real polynomials. Additionally, these statements yield a completely new class of nonnegativity certificates independent from sums of squares certificates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133