全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Sur une proprieté des polyn?mes de Stirling

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we give a positive answer to a question posed in 1960 by D.S. Mitrinovi\'{c} and R.S. Mitrinovi\'{c} (see: D.S. Mitrinovi\'{c} et R.S. Mitrinovi\'{c}, Tableaux qui fournissent des polyn\^{o}mes de Stirling, Publications de la Facult\'{e} d'Electronique, s\'{e}rie: Math\'{e}matiques et physique, 34, (1960).1-23.) concerned the Stirling numbers of the first kind $s(n,k).$ We prove that for all $k\geq 2$ there exist an integer $m_{k}$ and a primitive polynomial $P_{k}(x)$ in $\mathbb{Z}[x]$ such that for all $n\geq k$, $s(n,n-k)=\frac{1}{m_{k}}\binom{n}{k+1}\left(n(n-1)\right) ^{\mathop{\rm mod}\nolimits (k,2)}P_{k}(n)$. Moreover for all $k\geq1$, $P_{2k}(0)=P_{2k+1}(0)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133