全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Conditioning of Leverage Scores and Computation by QR Decomposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

The leverage scores of a full-column rank matrix A are the squared row norms of any orthonormal basis for range(A). We show that corresponding leverage scores of two matrices A and A + \Delta A are close in the relative sense, if they have large magnitude and if all principal angles between the column spaces of A and A + \Delta A are small. We also show three classes of bounds that are based on perturbation results of QR decompositions. They demonstrate that relative differences between individual leverage scores strongly depend on the particular type of perturbation \Delta A. The bounds imply that the relative accuracy of an individual leverage score depends on: its magnitude and the two-norm condition of A, if \Delta A is a general perturbation; the two-norm condition number of A, if \Delta A is a perturbation with the same norm-wise row-scaling as A; (to first order) neither condition number nor leverage score magnitude, if \Delta A is a component-wise row-scaled perturbation. Numerical experiments confirm the qualitative and quantitative accuracy of our bounds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133