全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Widely-Linear Digital Self-Interference Cancellation in Direct-Conversion Full-Duplex Transceiver

DOI: 10.1109/JSAC.2014.2330093

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article addresses the modeling and cancellation of self-interference in full-duplex direct-conversion radio transceivers, operating under practical imperfect radio frequency (RF) components. Firstly, detailed self-interference signal modeling is carried out, taking into account the most important RF imperfections, namely transmitter power amplifier nonlinear distortion as well as transmitter and receiver IQ mixer amplitude and phase imbalances. The analysis shows that after realistic antenna isolation and RF cancellation, the dominant self-interference waveform at receiver digital baseband can be modeled through a widely-linear transformation of the original transmit data, opposed to classical purely linear models. Such widely-linear self-interference waveform is physically stemming from the transmitter and receiver IQ imaging, and cannot be efficiently suppressed by classical linear digital cancellation. Motivated by this, novel widely-linear digital self-interference cancellation processing is then proposed and formulated, combined with efficient parameter estimation methods. Extensive simulation results demonstrate that the proposed widely-linear cancellation processing clearly outperforms the existing linear solutions, hence enabling the use of practical low-cost RF front-ends utilizing IQ mixing in full-duplex transceivers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133