全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Distribution of Gaps between Summands in Generalized Zeckendorf Decompositions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zeckendorf proved that any integer can be decomposed uniquely as a sum of non-adjacent Fibonacci numbers, $F_n$. Using continued fractions, Lekkerkerker proved the average number of summands of an $m \in [F_n, F_{n+1})$ is essentially $n/(\varphi^2 +1)$, with $\varphi$ the golden ratio. Miller-Wang generalized this by adopting a combinatorial perspective, proving that for any positive linear recurrence the number of summands in decompositions for integers in $[G_n, G_{n+1})$ converges to a Gaussian distribution. We prove the probability of a gap larger than the recurrence length converges to decaying geometrically, and that the distribution of the smaller gaps depends in a computable way on the coefficients of the recurrence. These results hold both for the average over all $m \in [G_n, G_{n+1})$, as well as holding almost surely for the gap measure associated to individual $m$. The techniques can also be used to determine the distribution of the longest gap between summands, which we prove is similar to the distribution of the longest gap between heads in tosses of a biased coin. It is a double exponential strongly concentrated about the mean, and is on the order of $\log n$ with computable constants depending on the recurrence.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133