全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

On the real differential of a slice regular function

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we show that the real differential of any injective slice regular function is everywhere invertible. The result is a generalization of a theorem proved by G. Gentili, S. Salamon and C. Stoppato, and it is obtained thanks, in particular, to some new information regarding the first coefficients of a certain polynomial expansion for slice regular functions (called \textit{spherical expansion}), and to a new general result which says that the slice derivative of any injective slice regular function is different from zero. A useful tool proven in this paper is a new formula that relates slice and spherical derivatives of a slice regular function. Given a slice regular function, part of its singular set is described as the union of surfaces on which it results to be constant.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133