|
Mathematics 2014
Dirichlet-Neumann and Neumann-Neumann Waveform Relaxation for the Wave EquationAbstract: We present a Waveform Relaxation (WR) version of the Dirichlet-Neumann and Neumann-Neumann algorithms for the wave equation in space time. Each method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves in space time with corresponding interface condition, followed by a correction step. Using a Laplace transform argument, for a particular relaxation parameter, we prove convergence of both algorithms in a finite number of steps for finite time intervals. The number of steps depends on the size of the subdomains and the time window length on which the algorithms are employed. We illustrate the performance of the algorithms with numerical results, and also show a comparison with classical and optimized Schwarz WR methods.
|