全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of 5-Substituted N-Methylmorphinan-6-ones as Potent Opioid Analgesics with Improved Side-Effect Profile

DOI: 10.1155/2012/208039

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the most important functions of the opioid system is the control of pain. Among the three main opioid receptor classes (μ, δ, κ), the μ (MOR) is the main type targeted for pharmacotherapy of pain. Opioid analgesics such as morphine, oxycodone and fentanyl are agonists at the MOR and are the mainstay for the treatment of moderate-to-severe pain. However, adverse effects related to opioid use are severe and often lead to early discontinuation and inadequate analgesia. The development of more effective and safer medications for the management of pain still remains a major direction in pharmaceutical research. Chemical approaches towards the identification of novel MOR analgesics with reduced side effects include structural modifications of 14-alkoxy-N-methylmorphinan-6-ones in key positions that are important for binding, selectivity, potency, and efficacy at opioid receptors. This paper describes a representative strategy to improve the therapeutic usefulness of opioid analgesics from the morphinan class of drugs by targeting position 5. The focus is on chemical and biological studies and structure-activity relationships of this series of ligands. We report on 14-alkoxymorphinan-6-ones having a methyl and benzyl group at position 5 as strong opioid antinociceptive agents with reduced propensity to cause undesired effects compared to morphine although interacting selectively with MORs. 1. Introduction The analgesic action of extracts of the opium poppy plant Papaver somniferum has been recognized for centuries. Morphine (Figure 1), the primary active component of opium, was isolated in 1805 by the German pharmacist Friedrich Sertürner, and more than 120 years elapsed when Gulland and Robinson proposed its correct structure [1]. Today, opioid analgesics play a central role in pain control and are generally considered to be highly effective in the management of moderate-to-severe pain [2, 3]. They can be classified into three classes: natural derivatives occurring in opium such as morphine and codeine; partially synthetic derivatives, including hydromorphone, oxycodone, oxymorphone, and buprenorphine; and synthetic compounds such as levorphanol, butorphanol, fentanyl, sufentanil, and the recently introduced tapentadol (Figure 1) [3–5]. Figure 1: Examples of clinically used opioid analgesics. Opioids act on three G-protein-coupled receptors (GPCRs) that is, μ (MOR), δ (DOR), and κ (KOR) [6], but it appears that the analgesic action of the most commonly used opioid analgesics is mediated primarily via the MOR. Activation of MORs, widely expressed in the

References

[1]  S. Benyhe, “Morphine: new aspects in the study of an ancient compound,” Life Sciences, vol. 55, no. 13, pp. 969–979, 1994.
[2]  C. J. Woolf, “Overcoming obstacles to developing new analgesics,” Nature Medicine, vol. 16, no. 11, pp. 1241–1247, 2010.
[3]  C. E. Inturrisi, “Clinical pharmacology of opioids for pain,” Clinical Journal of Pain, vol. 18, no. 4, pp. S3–S13, 2002.
[4]  R. Benyamin, A. M. Trescot, S. Datta et al., “Opioid complications and side effects,” Pain Physician, vol. 11, no. 2, pp. S105–S120, 2008.
[5]  I. Power, “An update on analgesics,” British Journal of Anaesthesia, vol. 107, no. 1, pp. 19–24, 2011.
[6]  G. W. Pasternak, Ed., The Opioid Receptors, Humana Press, New York, NY, USA, 2010.
[7]  A. Mansour, C. A. Fox, H. Akil, and S. J. Watson, “Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications,” Trends in Neurosciences, vol. 18, no. 1, pp. 22–29, 1995.
[8]  L. McCarthy, M. Wetzel, J. K. Sliker, T. K. Eisenstein, and T. J. Rogers, “Opioids, opioid receptors, and the immune response,” Drug and Alcohol Dependence, vol. 62, no. 2, pp. 111–123, 2001.
[9]  C. Stein, “Opioid receptors on peripheral sensory neurons,” Advances in Experimental Medicine and Biology, vol. 521, pp. 69–76, 2003.
[10]  P. Holzer, “Opioid receptors in the gastrointestinal tract,” Regulatory Peptides, vol. 155, no. 1–3, pp. 11–17, 2009.
[11]  L. J. Crofford, “Adverse effects of chronic opioid therapy for chronic musculoskeletal pain,” Nature Reviews Rheumatology, vol. 6, no. 4, pp. 191–197, 2010.
[12]  H. Schmidhammer, L. Aeppli, L. Atwell et al., “Synthesis and biological evaluation of 14-alkoxymorphinans. 1. Highly potent opioid agonists in the series of (?)-14-methoxy-N-methylmorphinan-6-ones,” Journal of Medicinal Chemistry, vol. 27, no. 12, pp. 1575–1579, 1984.
[13]  R. Lattanzi, M. Spetea, F. Schüllner et al., “Synthesis and biological evaluation of 14-alkoxymorphinans. 22. Influence of the 14-alkoxy group and the substitution in position 5 in 14-alkoxymorphinan-6-ones on in vitro and in vivo activities,” Journal of Medicinal Chemistry, vol. 48, no. 9, pp. 3372–3378, 2005.
[14]  M. Spetea, C. R. Bohotin, M. F. Asim, K. Stübegger, and H. Schmidhammer, “In vitro and in vivo pharmacological profile of the 5-benzyl analogue of 14-methoxymetopon, a novel μ opioid analgesic with reduced propensity to alter motor function,” European Journal of Pharmaceutical Sciences, vol. 41, no. 1, pp. 125–135, 2010.
[15]  H. Schmidhammer and M. Spetea, “Synthesis of 14-alkoxymorphinan derivatives and their pharmacological actions,” in Topics in Current Chemistry, H. Nagase, Ed., pp. 63–91, Springer, Heidelberg, Germany, 2011.
[16]  N. B. Eddy, “Metopon hydrochloride (methyldihydromorphinone hydrochloride),” Canadian Medical Association Journal, vol. 58, pp. 79–80, 1948.
[17]  N. B. Eddy, “Pharmacology of metopon and other new analgesic opium derivatives,” Annals of the New York Academy of Sciences, vol. 51, no. 1, pp. 51–58, 1948.
[18]  R. M. Boden, M. Gates, S. P. Ho, and P. Sundararaman, “Derivatives of the thebaine anion. 1. Structure of metopon. A direct demonstration,” Journal of Organic Chemistry, vol. 47, no. 7, pp. 1347–1349, 1982.
[19]  H. Schmidhammer, F. Fritsch, W. P. Burkard, L. Eggstein-Aeppli, F. Hefti, and M. I. Holck, “(?)-N-[(cyclopropyl)methyl]-3,4-dimethoxy-5-methylmorphinan-6-one, an opioid agonist with preference for kappa opioid receptors,” Helvetica Chimica Acta, vol. 71, no. 3, pp. 642–647, 1988.
[20]  H. Schmidhammer, J. B. Deeter, N. D. Jones, J. D. Leander, D. D. Schoepp, and J. K. Swartzendruber, “Synthesis, structure elucidation, and pharmacological evaluation of 5-methyl-oxymorphone (= 4,5α-epoxy-3,14-dihydroxy-5,17-dimethylmorphinan-6-one),” Helvetica Chimica Acta, vol. 71, no. 7, pp. 1801–1804, 1988.
[21]  M. Gates, R. M. Boden, and P. Sundararaman, “Derivatives of the thebaine anion. 2. 5-methylmorphine, 5-methylcodeine, 5-methylheroin, and some related compounds,” Journal of Organic Chemistry, vol. 54, no. 4, pp. 972–974, 1989.
[22]  J. Schütz, M. Spetea, M. Hoch et al., “Synthesis and biological evaluation of 14-alkoxymorphinans. 20.1 14-phenylpropoxymetopon: an extremely powerful analgesic,” Journal of Medicinal Chemistry, vol. 46, no. 19, pp. 4182–4187, 2003.
[23]  M. Spetea, T. Friedmann, P. Riba et al., “In vitro opioid activity profiles of 6-amino acid substituted derivatives of 14-O-methyloxymorphone,” European Journal of Pharmacology, vol. 483, no. 2-3, pp. 301–308, 2004.
[24]  P. Riba, T. Friedmann, K. P. Király et al., “Novel approach to demonstrate high efficacy of μ opioids in the rat vas deferens: a simple model of predictive value,” Brain Research Bulletin, vol. 81, no. 1, pp. 178–184, 2010.
[25]  Z. Fürst, B. Búzás, T. Friedmann, H. Schmidhammer, and A. Borsodi, “Highly potent novel opioid receptor agonist in the 14-alkoxymetopon series,” European Journal of Pharmacology, vol. 236, no. 2, pp. 209–215, 1993.
[26]  M. Spetea, F. Tóth, J. Schütz et al., “Binding characteristics of [3H]14-methoxymetopon, a high affinity mu-opioid receptor agonist,” European Journal of Neuroscience, vol. 18, no. 2, pp. 290–295, 2003.
[27]  H. Schmidhammer, A. Schratz, and J. Mitterdorfer, “Synthesis and biological evaluation of 14-alkoxymorphinans. Part 8. 14-methoxymetopon, an extremely potent opioid agonist,” Helvetica Chimica Acta, vol. 73, no. 6, pp. 1784–1787, 1990.
[28]  L. Mahurter, C. Garceau, J. Marino, H. Schmidhammer, G. Tóth, and G. W. Pasternak, “Separation of binding affinity and intrinsic activity of the potent μ-opioid 14-methoxymetopon,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 1, pp. 247–253, 2006.
[29]  G. Zernig, A. Saria, R. Krassnig, and H. Schmidhammer, “Signal transduction efficacy of the highly potent mu opioid agonist 14- methoxymetopon,” Life Sciences, vol. 66, no. 19, pp. 1871–1877, 2000.
[30]  E. Greiner, M. Spetea, R. Krassnig et al., “Synthesis and biological evaluation of 14-alkoxymorphinans. 18.1 N-substituted 14-phenylpropyloxymorphinan-6-ones with unanticipated agonist properties: extending the scope of common structure-activity relationships,” Journal of Medicinal Chemistry, vol. 46, no. 9, pp. 1758–1763, 2003.
[31]  M. A. King, W. Su, C. L. Nielan et al., “14-methoxymetopon, a very potent μ-opioid receptor-selective analgesic with an unusual pharmacological profile,” European Journal of Pharmacology, vol. 459, no. 2-3, pp. 203–209, 2003.
[32]  K. P. Király, P. Riba, C. D'Addario et al., “Alterations in prodynorphin gene expression and dynorphin levels in different brain regions after chronic administration of 14-methoxymetopon and oxycodone-6-oxime,” Brain Research Bulletin, vol. 70, no. 3, pp. 233–239, 2006.
[33]  L. Urigüen, B. Fernández, E. M. Romero et al., “Effects of 14-methoxymetopon, a potent opioid agonist, on the responses to the tail electric stimulation test and plus-maze activity in male rats: neuroendocrine correlates,” Brain Research Bulletin, vol. 57, no. 5, pp. 661–666, 2002.
[34]  E. Freye, H. Schmidhammer, and L. Latasch, “14-methoxymetopon, a potent opioid, induces no respiratory depression, less sedation, and less bradycardia than sufentanil in the dog,” Anesthesia and Analgesia, vol. 90, no. 6, pp. 1359–1364, 2000.
[35]  I. Bileviciute-Ljungar, M. Spetea, Y. Guo, J. Schütz, P. Windisch, and H. Schmidhammer, “Peripherally mediated antinociception of the μ-opioid receptor agonist 2-[(4,5α-epoxy-3-hydroxy-14β-methoxy-17-methylmorphinan-6β-yl) amino]acetic acid (HS-731) after subcutaneous and oral administration in rats with carrageenan-induced hindpaw inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 1, pp. 220–227, 2006.
[36]  G. F. Stegmann, “Etorphine-halothane anaesthesia in two five-year-old African elephants (Loxodonta africana),” Journal of the South African Veterinary Association, vol. 70, no. 4, pp. 164–166, 1999.
[37]  J. Sterken, J. Troubleyn, F. Gasthuys, V. Maes, M. Diltoer, and C. Verborgh, “Intentional overdose of large animal immobilon,” European Journal of Emergency Medicine, vol. 11, no. 5, pp. 298–301, 2004.
[38]  A. Avdeef and B. Testa, “Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques,” Cellular and Molecular Life Sciences, vol. 59, no. 10, pp. 1681–1689, 2002.
[39]  B. Faller, “Physicochemical profiling in early drug discovery: new challenges at the age of high-throughput screen and combinatorial chemistry,” in Chemistry and Molecular Aspects of Drug Design and Action, E. A. Rekka and P. N. Kourounakis, Eds., pp. 303–312, CRC Press, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133