|
Mathematics 2014
The $R_{\infty} property for abelian groupsAbstract: It is well known there is no finitely generated abelian group which has the $R_\infty$ property. We will show that also many non-finitely generated abelian groups do not have the $R_\infty$ property, but this does not hold for all of them. In fact we construct an uncountable number of infinite countable abelian groups which do have the $R_{\infty}$ property. We also construct an abelian group such that the cardinality of the Reidemeister classes is uncountable for any automorphism of that group. 8 pages, no figures
|