全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Combinatorial categorical equivalences of Dold-Kan type

DOI: 10.1016/j.jpaa.2015.02.020

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove a class of equivalences of additive functor categories that are relevant to enumerative combinatorics, representation theory, and homotopy theory. Let $\mathcal{X}$ denote an additive category with finite direct sums and splitting idempotents. The class includes (a) the Dold-Puppe-Kan theorem that simplicial objects in $\mathcal{X}$ are equivalent to chain complexes in $\mathcal{X}$; (b) the observation of Church-Ellenberg-Farb that $\mathcal{X}$-valued species are equivalent to $\mathcal{X}$-valued functors from the category of finite sets and injective partial functions; (c) a Dold-Kan-type result of Pirashvili concerning Segal's category $\Gamma$; and so on. We provide a construction which produces further examples.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133