全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Discretized fractional substantial calculus

DOI: 10.1051/m2an/2014037

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper discusses the properties and the numerical discretizations of the fractional substantial integral $$I_s^\nu f(x)=\frac{1}{\Gamma(\nu)} \int_{a}^x{\left(x-\tau\right)^{\nu-1}}e^{-\sigma(x-\tau)}{f(\tau)}d\tau,\nu>0, $$ and the fractional substantial derivative $$D_s^\mu f(x)=D_s^m[I_s^\nu f(x)], \nu=m-\mu,$$ where $D_s=\frac{\partial}{\partial x}+\sigma=D+\sigma$, $\sigma$ can be a constant or a function without related to $x$, say $\sigma(y)$; and $m$ is the smallest integer that exceeds $\mu$. The Fourier transform method and fractional linear multistep method are used to analyze the properties or derive the discretized schemes. And the convergences of the presented discretized schemes with the global truncation error $\mathcal{O}(h^p)$$ (p=1,2,3,4,5)$ are theoretically proved and numerically verified.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133