全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Differential inequalities and quasi-normal families

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that a family ${\cal F}$ of meromorphic functions in a domain $D$ satisfying $$\frac{|f^{(k)}|}{1+|f^{(j)}|^\alpha}(z)\ge C \qquad \mbox{for all} z\in D \mbox{and all} f\in {\cal F}$$ (where $k$ and $j$ are integers with $k>j\ge 0$ and $C>0$, $\alpha>1$ are real numbers) is quasi-normal. Furthermore, if all functions in ${\cal F}$ are holomorphic, the order of quasi-normality of ${\cal F}$ is at most $j-1$. The proof relies on the Zalcman rescaling method and previous results on differential inequalities constituting normality.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133