全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A formula for the derivative of the p-adic L-function of the symmetric square of a finite slope modular form

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let f be a modular form of weight k and Nebentypus $\psi$. By generalizing a construction of Dabrowski and Delbourgo, we construct a p-adic L-function interpolating the special values of the L-function $L(s,\mathrm{Sym}^2(f)\otimes \xi)$, where $\xi$ is a Dirichlet character. When s=k-1 and $\xi=\psi^{-1}$, this p-adic L-function vanishes due to the presence of a so-called trivial zero. We give a formula for the derivative at s=k-1 of this p-adic L-function when the form f is Steinberg at p. If the weight of f is even, the conductor is even and squarefree, and the Nebentypus is trivial this formula implies a conjecture of Benois.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133