全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

New Identities Relating Wild Goppa Codes

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a given support $L \in \mathbb{F}_{q^m}^n$ and a polynomial $g\in \mathbb{F}_{q^m}[x]$ with no roots in $\mathbb{F}_{q^m}$, we prove equality between the $q$-ary Goppa codes $\Gamma_q(L,N(g)) = \Gamma_q(L,N(g)/g)$ where $N(g)$ denotes the norm of $g$, that is $g^{q^{m-1}+\cdots +q+1}.$ In particular, for $m=2$, that is, for a quadratic extension, we get $\Gamma_q(L,g^q) = \Gamma_q(L,g^{q+1})$. If $g$ has roots in $\mathbb{F}_{q^m}$, then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of $g$ in $\mathbb{F}_{q^m}$. These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133