全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On Tate's conjecture for elliptic modular surfaces over finite fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

For $N\geq 3$, we show Tate's conjecture for the elliptic modular surface $E(N)$ of level $N$ over $\mathbb{F}_p$ for a prime $p$ satisfying $p\equiv 1\mod N$ outside of a set of primes of density zero. We also prove a strong form of Tate's conjecture for $E(N)$ over any finite field of characteristic $p$ prime to $N$ under the assumption that the formal Brauer group of $E(N)$ is of finite height.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133