全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

$\mathfrak{sl}_3$-web bases, intermediate crystal bases and categorification

DOI: 10.1007/s10801-014-0518-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give an explicit graded cellular basis of the $\mathfrak{sl}_3$-web algebra $K_S$. In order to do this, we identify Kuperberg's basis for the $\mathfrak{sl}_3$-web space $W_S$ with a version of Leclerc-Toffin's intermediate crystal basis and we identify Brundan, Kleshchev and Wang's degree of tableaux with the weight of flows on webs and the $q$-degree of foams. We use these observations to give a "foamy" version of Hu and Mathas graded cellular basis of the cyclotomic Hecke algebra which turns out to be a graded cellular basis of the $\mathfrak{sl}_3$-web algebra. We restrict ourselves to the $\mathfrak{sl}_3$ case over $\mathbb{C}$ here, but our approach should, up to the combinatorics of $\mathfrak{sl}_N$-webs, work for all $N>1$ or over $\mathbb{Z}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133