全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Tensor product of quotient Hilbert modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we present a unified approach to problems of tensor product of quotient modules of Hilbert modules over $\mathbb{C}[z]$ and corresponding submodules of reproducing kernel Hilbert modules over $\mathbb{C}[z_1, \ldots, z_n]$ and the doubly commutativity property of module multiplication operators by the coordinate functions. More precisely, for a reproducing kernel Hilbert module $\clh$ over $\mathbb{C}[z_1, \ldots, z_n]$ of analytic functions on the polydisc in $\mathbb{C}^n$ which satisfies certain conditions, we characterize the quotient modules $\q$ of $\clh$ such that $\q$ is of the form $\q_1 \otimes \cdots \otimes \q_n$, for some one variable quotient modules $\{\q_1, \ldots, \q_n\}$. For $\clh$ the Hardy module over polydisc $H^2(\mathbb{D}^n)$, this reduces to some recent results by Izuchi, Nakazi and Seto and the third author. This is used to obtain a classification of co-doubly commuting submodules for a class of reproducing kernel Hilbert modules over the unit polydisc. These results are applied to compute the cross commutators of co-doubly commuting submodules. This is used to give further insight into the wandering subspaces and ranks of submodules of the Hardy module case. Our results includes the case of weighted Bergman modules over the unit polydisc in $\mathbb{C}^n$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133