全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A version of Kalton's theorem for the space of regular operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we extend some recent results in the space of regular operators. In particular, we provide the following Banach lattice version of a classical result of Kalton: Let $E$ be an atomic Banach lattice with an order continuous norm and $F$ a Banach lattice. Then the following are equivalent: (i) $L^r(E,F)$ contains no copy of $\ell_\infty$, \,\, (ii) $L^r(E,F)$ contains no copy of $c_0$, \,\, (iii) $K^r(E,F)$ contains no copy of $c_0$, \,\, (iv) $K^r(E,F)$ is a (projection) band in $L^r(E,F)$, \,\, (v) $K^r(E,F)=L^r(E,F)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133