The novel selective D1 dopaminergic full agonists A-68930, A-77636 were discovered by the synthesis of molecules to probe the bioactive conformation of the partial agonist SKF-38393, by the use of this information to add D1 affinity and selectivity to a screening hit, and by traditional medicinal chemistry exploration of structure-activity relationships. The subsequent design of A-86929 and ABT-413 capitalized on these results, recently disclosed agonists, and traditional medicinal chemistry. 1. Introduction For many years dopamine was considered to be biologically inert and acted merely as a precursor to the important neurotransmitters norepinephrine and dopamine [1]. However, Abbott’s research on the biological properties of dopamine started in the late 1950s after the discovery of the monoamine oxidase inhibitor pargyline [2–4]. Using this compound Dr. Guy Everett showed that dopamine is an important neurotransmitter—a fact that was not universally accepted in the early 1960s [5–8]. He described dopamine as “the Cinderella compound,” unappreciated but not to be overlooked [1]. Although the role of dopamine in Parkinsonism was understood at this time, this was not an area of active investigation at Abbott Laboratories. Instead, monoamine oxidase inhibitors were targeted to the treatment of depression. Somewhat later we had a small effort to discover an inhibitor of dopamine-β-hydroxylase, the enzyme that converts dopamine to norepinephrine [9]. Because norepinephrine raises blood pressure but dopamine does not, such compounds would be potential antihypertensives [10]. Although we had a robust QSAR, the project was abandoned before we found a novel inhibitor. A few years later Abbott had a joint project with Dr. Leon Goldberg from the University of Chicago. The objective was to design prodrugs of dopamine that would be selectively released in the kidney. Such agents would be useful in congestive heart failure and shock because they would not have the hemodynamic side effects of parenterally administered dopamine. They might be useful, at higher doses, as hypertensive agents [11, 12]. Our first prodrugs were alpha-amino acid amides of the amino group of dopamine. Although these prodrugs release dopamine in the kidney, the primary site of hydrolysis is the gut. Hence, they are not renalspecific [13, 14]. However, after a literature search we proposed the γ-glutamyl derivative. It is indeed released primarily in the kidney [15]. The compound was patented, but it was not developed further [16, 17]. The structure-activity relationships of these compounds
References
[1]
O. Hornykiewicz, “Brain dopamine: A historical perspective,” Handbook of Experimental Pharmacology, vol. 154, pp. 1–22, 2002.
[2]
J. D. Taylor, A. A. Wykes, Y. C. Gladish, and W. B. Martin, “New inhibitor of monoamine oxidase,” Nature, vol. 187, no. 4741, pp. 941–942, 1960.
[3]
L. R. Swett, W. B. Martin, J. D. Taylor, G. M. Everett, A. A. Wykes, and Y. C. Gladish, “Structure-activity relations in the pargyline series,” Annals of the New York Academy of Sciences, vol. 107, pp. 891–898, 1963.
[4]
Y. C. Martin, W. B. Martin, and J. D. Taylor, “The organometallic route to benzylamine type monoamine oxidase inhibitors,” Journal of Medicinal Chemistry, vol. 18, pp. 883–888, 1975.
[5]
G. Everett, J. Davin, and J. Toman, “Pharmacological studies of monoamine oxidaseIinhibitors,” Federation Proceedings, vol. 18, p. 388, 1959.
[6]
G. Everett and R. Weigand, “An enzyme in human blood plasma that inactivates bradykinin and kallidins,” Biochemical Pharmacology, vol. 11, no. 7, pp. 585–592, 1962.
[7]
G. Everett, R. Wiegand, and W. Paton, “Central amines and behavioral states: a critique and new data,” in Proceedings of the 1st International Pharmacological Meeting, Pharmacological Analysis of Central Nervous Action 85, 1962.
[8]
G. Everett, R. Wiegand, and F. Rinaldi, “Pharmacologic studies of some nonhydrazine mao Inhibitors,” Annals of the New York Academy of Sciences, vol. 107, no. 3, pp. 1068–1080, 1963.
[9]
Y. C. Martin, Quantitative Drug Design: A Critical Introduction, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2010.
[10]
H. Suda, T. Takeuchi, T. Nagatsu, M. Matsuzaki, I. Matsumoto, and H. Umezawa, “Inhibition of dopamine beta-hydroxylase by 5-alkylpicolinic acid and their hypotensive effects,” Chemical and Pharmaceutical Bulletin, vol. 17, no. 11, pp. 2377–2380, 1969.
[11]
L. I. Goldberg, P. F. Sonneville, and J. L. McNay, “An investigation of the structural requirements for dopamine-like renal vasodilation: phenylethylamines and apomorphine,” Journal of Pharmacology and Experimental Therapeutics, vol. 163, no. 1, pp. 188–197, 1968.
[12]
L. I. Goldberg, “Cardiovascular and renal actions of dopamine: potential clinical applications,” Pharmacological Reviews, vol. 24, no. 1, pp. 1–29, 1972.
[13]
F. N. Minard, J. C. Cain, and D. S. Grant, “Metabolism of amino acid amides of dopamine by the dog,” in Proceeding of the 165th National Meeting MEDI010, American Chemical Society Abstracts, 1973.
[14]
F. N. Minard, J. C. Cain, D. S. Grant, C. W. Ours, and P. H. Jones, “Hydrolysis of amino acid amides of dopamine by extracts of animal tissues,” Biochemical Medicine, vol. 11, no. 4, pp. 318–326, 1974.
[15]
F. N. Minard, D. S. Grant, J. C. Cain, P. H. Jones, and J. Kyncl, “Metabolism of γ-glutamyl dopamide and its carboxylic acid esters,” Biochemical Pharmacology, vol. 29, no. 1, pp. 69–75, 1980.
[16]
J. Kyncl, K. Riley, Y. C. Martin, and C. W. Ours, “Upsilon-glutamyl Amide of Dopamine,” US patent no. 3,903,147, 1975.
[17]
J. Kyncl, K. Riley, Y. C. Martin, and C. W. Ours, “Compositions and methods of increasing renal blood flow with upsilon-glutamyl amide of dopamine,” US patent no. 3,947,590, 1975.
[18]
J. F. DeBernardis, J. J. Kyncl, F. Z. Basha et al., “Conformationally defined adrenergic agents. 2. catechol imidazoline derivatives: biological effects at α and α adrenergic receptors,” Journal of Medicinal Chemistry, vol. 29, no. 4, pp. 463–467, 1986.
[19]
Y. C. Martin, E. B. Danaher, L. Kauslauskas, and K.-H. Kim, “Comparative molecular modeling of adrenergic vs. dopaminergic receptors,” in Pharmacology, M. J. Rand and C. Raper, Eds., pp. 611–614, Excerpta Medica, New York, NY, USA, 1987.
[20]
A. A. Hancock, J. J. Kyncl, Y. C. Martin, and J. F. DeBernardis, “Differentiation of alpha-adrenergic receptors using pharmacological evaluation and molecular modeling of selective adrenergic agents,” Journal of Receptor Research, vol. 8, no. 1–4, pp. 23–46, 1988.
[21]
Y. C. Martin, J. W. Kebabian, R. MacKenzie, and R. Schoenleber, “Molecular modeling-based design of novel, selective, potent D1 dopamine agonists,” in QSAR: Rational Approaches on the Design of Bioactive Compounds, C. Silipo and A. Vittoria, Eds., pp. 469–482, Elsevier, Amsterdam, The Netherlands, 1991.
[22]
Y. C. Martin, C. T. Lin, and J. Wu., “Application of CoMFA to D1 dopaminergic agonists: a case study,” in 3D QSAR in Drug Design: Theory: Methods and Applications, H. Kubinyi, Ed., pp. 643–660, ESCOM, Leiden, The Netherlands, 1993.
[23]
Y. C. Martin and C. T. Lin, “Multiple receptors for dopamine,” in The Practice of Medicinal Chemistry, C. G. Wermuth, Ed., pp. 459–483, Academic Press, London, UK, 1996.
[24]
J. W. Kebabian and D. B. Calne, “Multiple receptors for dopamine,” Nature, vol. 277, no. 5692, pp. 93–96, 1979.
[25]
J. W. Kebabian, “Mechanism of dopamine-mediated activation of bk channels in human coronary artery smooth muscle cells,” Advances in Experimental Medicine and Biology, vol. 235, pp. 19–31, 1988.
[26]
B. K. Madras, M. A. Fahey, D. R. Canfield, and R. D. Spealman, “D and d dopamine receptors in caudate-putamen of nonhuman primates (macaca fascicularis),” Journal of Neurochemistry, vol. 51, no. 3, pp. 934–943, 1988.
[27]
DGEOM. Distance Geometry; QCPE 590, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind, USA, 1990.
[28]
Y. Yuri and N. L. Allinger, “The MMP2 calculational method,” Journal of Computational Chemistry, vol. 8, pp. 581–603, 1987.
[29]
M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum mechanical molecular model,” Journal of the American Chemical Society, vol. 107, no. 13, pp. 3902–3909, 1985.
[30]
R. Schoenleber, Y. C. Martin, M. Wilson, et al., 3D QSAR: Current State, Scope, and Limitations, vol. 3, American Chemical Society Meeting, New York, NY, USA, 1991.
[31]
R. Schoenleber, M. R. Michaelides , Y. C. Martin, et al., “Design and synthesis of dopamine D1 selective antagonists,” in Proceeding of the American Chemical Society Meeting, NewYork, NY, USA, August 1991.
[32]
J. H. Van Drie, D. Weininger, and Y. C. Martin, “Aladdin: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures,” Journal of Computer-Aided Molecular Design, vol. 3, no. 3, pp. 225–251, 1989.
[33]
M. P. DeNinno, R. Schoenleber, K. E. Asin, R. MacKenzie, and J. W. Kebabian, “(1R,3S)-1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-3-phenyl-1H-2-benzopyran: a potent and selective D1 agonist,” Journal of Medicinal Chemistry, vol. 33, no. 11, pp. 2948–2950, 1990.
[34]
J. W. Kebabian, C. Briggs, D. R. Britton et al., “A68930: a potent and specific agonist for the D-1 dopamine receptor,” American Journal of Hypertension, vol. 3, no. 6, pp. 40S–42S, 1990.
[35]
M. P. DeNinno, R. Schoenleber, R. J. Perner et al., “Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyrans: characterization of an auxiliary binding region in the D1 receptor,” Journal of Medicinal Chemistry, vol. 34, no. 8, pp. 2561–2569, 1991.
[36]
M. P. DeNinno, R. Schoenleber, R. MacKenzie et al., “A68930: a potent agonist selective for the dopamine d receptor,” European Journal of Pharmacology, vol. 199, no. 2, pp. 209–219, 1991.
[37]
M. R. Michaelides, R. Schoenleber, S. Thomas et al., “Synthesis and pharmacological evaluation of 1-(aminomethyl)-3,4-dihydro-5-hydroxy-1H-2-benzopyrans as dopamine d1 selective ligands,” Journal of Medicinal Chemistry, vol. 34, no. 10, pp. 2946–2953, 1991.
[38]
J. W. Kebabian, D. R. Britton, M. P. DeNinno et al., “A-77636: a potent and selective dopamine d receptor agonist with antiparkinsonian activity in marmosets,” European Journal of Pharmacology, vol. 229, no. 2-3, pp. 203–209, 1992.
[39]
J. W. Kebabian, M. P. DeNinno, R. Schoenleber, R. MacKenzie, D. R. Britton, and K. E. Asin, “A68930: a potent agonist specific for the dopamine d receptor,” Neurochemistry International, vol. 20, pp. 157S–160S, 1992.
[40]
D. R. Britton, J. W. Kebabian, and P. Curzon, “Rapid reversal of denervation supersensitivity of dopamine d receptors by l-dopa or a novel dopamine d receptor agonist, A68930,” European Journal of Pharmacology, vol. 200, no. 1, pp. 89–93, 1991.
[41]
P. Blanchet, P. J. Bédard, D. R. Britton, and J. W. Kebabian, “Differential effect of selective D-1 and D-2 dopamine receptor agonists on levodopa-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-exposed monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 267, no. 1, pp. 275–279, 1993.
[42]
M. R. Michaelides, Y. Hong, S. DiDomenico et al., “(5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431),” Journal of Medicinal Chemistry, vol. 38, no. 18, pp. 3445–3447, 1995.
[43]
T. W. Lovenberg, W. K. Brewster, D. M. Mottola et al., “Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist,” European Journal of Pharmacology, vol. 166, no. 1, pp. 111–113, 1989.
[44]
R. K. B. Pearce, M. Jackson, D. R. Britton et al., “Actions of the D agonists A-77636 and A-86929 on locomotion and dyskinesia in MPTP-treated L-dopa-primed common marmosets,” Psychopharmacology, vol. 142, no. 1, pp. 51–60, 1999.
[45]
O. Rascol, O. Blin, C. Thalamas et al., “ABT-431, a d1 receptor agonist prodrug, has efficacy in parkinson's disease,” Annals of Neurology, vol. 45, no. 6, pp. 736–741, 1999.
[46]
O. Rascol, J. G. Nutt, O. Blin et al., “Induction by dopamine D receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease,” Archives of Neurology, vol. 58, no. 2, pp. 249–254, 2001.
[47]
W. J. Giardina and M. Williams, “Adrogolide HCL (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: Preclinical pharmacology and clinical data,” CNS Drug Reviews, vol. 7, Blackwell, Oxford, UK, 2001.
[48]
Y. Zheng, K. C. Marsh, R. J. Bertz, T. El-Shourbagy, and A. L. Adjei, “Pulmonary delivery of a dopamine D-1 agonist, ABT-431, in dogs and humans,” International Journal of Pharmaceutics, vol. 191, no. 2, pp. 131–140, 1999.
[49]
D. W. Self, D. A. Karanian, and J. J. Spencer, “Effects of the novel D1 dopamine receptor agonist ABT-431 on cocaine self-administration and reinstatement,” Annals of the New York Academy of Sciences, vol. 909, pp. 133–144, 2000.
[50]
M. Haney, E. D. Collins, A. S. Ward, R. W. Foltin, and M. W. Fischman, “Effect of a selective dopamine d agonist (ABT-431) on smoked cocaine self-administration in humans,” Psychopharmacology, vol. 143, no. 1, pp. 102–110, 1999.
[51]
S. A. Castner, G. V. Williams, and P. S. Goldman-Rakic, “Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation,” Science, vol. 287, no. 5460, pp. 2020–2022, 2000.
[52]
S. A. Castner and P. S. Goldman-Rakic, “Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine d receptor stimulation,” Journal of Neuroscience, vol. 24, no. 6, pp. 1446–1450, 2004.
[53]
G. Wolber, A. A. Dornhofer, and T. Langer, “Efficient overlay of small organic molecules using 3D pharmacophores,” Journal of Computer-Aided Molecular Design, vol. 20, no. 12, pp. 773–788, 2006.