全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the regularity of a distributional solution $(u,p)$ of the 3D incompressible evolution Navier-Stokes equations. Let $B_r$ denote concentric balls in $\mathbb{R}^3$ with radius $r$. We will show that if $p\in L^{m} (0,1; L^1(B_2))$, $m>2$, and if $u$ is sufficiently small in $L^{\infty} (0,1; L^{3,\infty}(B_2))$, without any assumption on its gradient, then $u$ is bounded in $B_1\times (\frac{1}{10},1)$. It is an endpoint case of the usual Serrin-type regularity criteria, and extends the steady-state result of Kim-Kozono to the time dependent setting. In the appendix we also show some nonendpoint borderline regularity criteria.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133