全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Low energy resolvent for the Hodge Laplacian: Applications to Riesz transform, Sobolev estimates and analytic torsion

Full-Text   Cite this paper   Add to My Lib

Abstract:

On an asymptotically conic manifold $(M,g)$, we analyze the asymptotics of the integral kernel of the resolvent $R_q(k):=(\Delta_q+k^2)^{-1}$ of the Hodge Laplacian $\Delta_q$ on $q$-forms as the spectral parameter $k$ approaches zero, assuming that 0 is not a resonance. The first application we give is an $L^p$ Sobolev estimate for $d+\delta$ and $\Delta_q$. Then we obtain a complete characterization of the range of $p>1$ for which the Riesz transform for $q$-forms $T_q=(d+\delta)\Delta_q^{-1/2}$ is bounded on $L^p$. Finally, we obtain an asymptotic formula for the analytic torsion of a family of smooth compact Riemannian manifolds $(\Omega_\epsilon,g_\epsilon)$ degenerating to a compact manifold $(\Omega_0,g_0)$ with a conic singularity as $\epsilon\to 0$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133