全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Chains of functions in $C(K)$-spaces

DOI: 10.1017/S1446788715000245

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Bishop property ($\symbishop$), introduced recently by K.P. Hart, T. Kochanek and the first-named author, was motivated by Pe{\l}czy{\'n}ski's classical work on weakly compact operators on $C(K)$-spaces. This property asserts that certain chains of functions in said spaces, with respect to a particular partial ordering, must be countable. There are two versions of ($\symbishop$): one applies to linear operators on $C(K)$-spaces and the other to the compact Hausdorff spaces themselves. We answer two questions that arose after ($\symbishop$) was first introduced. We show that if $\mathscr{D}$ is a class of compact spaces that is preserved when taking closed subspaces and Hausdorff quotients, and which contains no non-metrizable linearly ordered space, then every member of $\mathscr{D}$ has ($\symbishop$). Examples of such classes include all $K$ for which $C(K)$ is Lindel\"of in the topology of pointwise convergence (for instance, all Corson compact spaces) and the class of Gruenhage compact spaces. We also show that the set of operators on a $C(K)$-space satisfying ($\symbishop$) does not form a right ideal in $\mathscr{B}(C(K))$. Some results regarding local connectedness are also presented.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133