全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

$V$-filtrations in positive characteristic and test modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $R$ be a ring essentially of finite type over an $F$-finite field. Given an ideal $\mathfrak{a}$ and a principal Cartier module $M$ we introduce the notion of a $V$-filtration of $M$ along $\mathfrak{a}$. If $M$ is $F$-regular then this coincides with the test module filtration. We also show that the associated graded induces a functor $Gr^{[0,1]}$ from Cartier crystals to Cartier crystals supported on $V(\mathfrak{a})$. This functor commutes with finite pushforwards for principal ideals and with pullbacks along essentially \'etale morphisms. We also derive corresponding transformation rules for test modules generalizing previous results by Schwede and Tucker in the \'etale case (cf. arXiv:1003.4333). If $\mathfrak{a} = (f)$ defines a smooth hypersurface and $R$ is in addition regular then for a Cartier crystal corresponding to a locally constant sheaf on $\Spec R_{\acute{e}t}$ the functor $Gr^{[0,1]}$ corresponds, up to a shift, to $i^!$, where $i: V(\mathfrak{a}) \to \Spec R$ is the closed immersion.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133