|
Mathematics 2011
A note on the splitting theorem for the weighted measureDOI: 10.1007/s10455-012-9346-9 Abstract: In this paper we study complete manifolds equipped with smooth measures whose spectrum of the weighted Laplacian has an optimal positive lower bound and the $m$-dimensional Bakry-\'Emery Ricci curvature is bounded from below by some negative constant. In particular, we prove a splitting type theorem for complete smooth measure manifolds that have a finite weighted volume end. This result is regarded as a study of the equality case of an author's theorem (J. Math. Anal. Appl. 361 (2010) 10-18).
|