全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

A supercharacter table decomposition via power-sum symmetric functions

DOI: 10.1142/S0218196713400171

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give an $AB$-factorization of the supercharacter table of the group of $n\times n$ unipotent upper triangular matrices over $\FF_q$, where $A$ is a lower-triangular matrix with entries in $\ZZ[q]$ and $B$ is a unipotent upper-triangular matrix with entries in $\ZZ[q^{-1}]$. To this end we introduce a $q$ deformation of a new power-sum basis of the Hopf algebra of symmetric functions in noncommutative variables. The factorization is obtain from the transition matrices between the supercharacter basis, the $q$-power-sum basis and the superclass basis. This is similar to the decomposition of the character table of the symmetric group $S_n$ given by the transition matrices between Schur functions, monomials and power-sums. We deduce some combinatorial results associated to this decomposition. In particular we compute the determinant of the supercharacter table.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133