全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

On the centralizer of an $I$-matrix in $M_2(R/I)$, $I$ a principal ideal and $R$ a UFD

Full-Text   Cite this paper   Add to My Lib

Abstract:

The concept of an $I$-matrix in the full $2\times 2$ matrix ring $M_2(R/I)$, where $R$ is an arbitrary UFD and $I$ is a nonzero ideal in $R$, was introduced in \cite{mar}. Moreover a concrete description of the centralizer of an $I$-matrix $\hat B$ in $M_2(R/I)$ as the sum of two subrings $\mathcal S_1$ and $\mathcal S_2$ of $M_2(R/I)$ was also given, where $\mathcal S_1$ is the image (under the natural epimorphism from $M_2(R)$ to $M_2(R/I)$) of the centralizer in $M_2(R)$ of a pre-image of $\hat B$, and where the entries in $\mathcal S_2$ are intersections of certain annihilators of elements arising from the entries of $\hat B$. In the present paper, we obtain results for the case when $I$ is a principal ideal $$, $k\in R$ a nonzero nonunit. Mainly we solve two problems. Firstly we find necessary and sufficient conditions for when $\mathcal S_1\subseteq\mathcal S_2$, for when $\mathcal S_2\subseteq \mathcal S_1$ and for when $\mathcal S_1=\mathcal S_2$. Secondly we provide a formula for the number of elements in the centralizer of $\hat B$ for the case when $R/$ is finite.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133