|
Mathematics 2011
Minimal supersolutions of convex BSDEsDOI: 10.1214/13-AOP834 Abstract: We study the nonlinear operator of mapping the terminal value $\xi$ to the corresponding minimal supersolution of a backward stochastic differential equation with the generator being monotone in $y$, convex in $z$, jointly lower semicontinuous and bounded below by an affine function of the control variable $z$. We show existence, uniqueness, monotone convergence, Fatou's lemma and lower semicontinuity of this operator. We provide a comparison principle for minimal supersolutions of BSDEs.
|