全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Growth of Selmer Groups over function fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the rank of the $p$-Selmer group $Sel_p(A/k)$ of an abelian variety $A/k$, where $k$ is a function field. If $K/k$ is a quadratic extension and $F/k$ is a dihedral extension and the $\mathbb{Z}_p$-corank of $Sel_p (A/K)$ is odd, we show that the $\mathbb{Z}_p$-corank of $Sel_p(A/F) \geq [F:K]$. The result uses the theory of local constants developed by Mazur-Rubin for elliptic curves over number fields.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133