全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Constructing universally small subsets of a given packing index in Polish groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

A subset of a Polish space $X$ is called universally small if it belongs to each ccc $\sigma$-ideal with Borel base on $X$. Under CH in each uncountable Abelian Polish group $G$ we construct a universally small subset $A_0\subset G$ such that $|A_0\cap gA_0|=\mathfrak c$ for each $g\in G$. For each cardinal number $\kappa\in[5,\mathfrak c^+]$ the set $A_0$ contains a universally small subset $A$ of $G$ with sharp packing index $\pack^\sharp(A_\kappa)=\sup\{|\mathcal D|^+:\mathcal D\subset \{gA\}_{g\in G}$ is disjoint$\}$ equal to $\kappa$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133