全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Displacement energy of unit disk cotangent bundles

DOI: 10.1007/s00209-013-1224-z

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give an upper bound of a Hamiltonian displacement energy of a unit disk cotangent bundle $D^*M$ in a cotangent bundle $T^*M$, when the base manifold $M$ is an open Riemannian manifold. Our main result is that the displacement energy is not greater than $C r(M)$, where $r(M)$ is the inner radius of $M$, and $C$ is a dimensional constant. As an immediate application, we study symplectic embedding problems of unit disk cotangent bundles. Moreover, combined with results in symplectic geometry, our main result shows the existence of short periodic billiard trajectories and short geodesic loops.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133