|
Mathematics 2011
Nonuniform Coverage Control on the LineAbstract: This paper investigates control laws allowing mobile, autonomous agents to optimally position themselves on the line for distributed sensing in a nonuniform field. We show that a simple static control law, based only on local measurements of the field by each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/movement/computation rounds that is essentially quadratic in the number of agents. Further, we exhibit a dynamic control law which, under slightly stronger assumptions on the capabilities and knowledge of each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/communication/computation/movement rounds that is essentially linear in the number of agents. Crucially, both algorithms are fully distributed and robust to unpredictable loss and addition of agents.
|