全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Stirring two grains of sand

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider two unit balls in a $d$-dimensional flat torus with edge length $r$, for $d\geq 2$. The balls do not move by themselves but they are pushed by a Brownian motion. The balls never intersect---they reflect if they touch. It is proved that the joint distribution of the processes representing the centers of the balls converges to the distribution of two independent Brownian motions when $r\to \infty$, assuming that we use a proper clock and proper scaling. The diffusion coefficient of the limit process depends on the dimension. The positions of the balls are asymptotically independent also in the following sense. The rescaled stationary distributions of the centers of the balls converge to the product of the stationary (hence uniform) distributions for each ball separately, as $r\to\infty$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133