全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Number fields without small generators

DOI: 10.1017/S0305004115000298

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $D>1$ be an integer, and let $b=b(D)>1$ be its smallest divisor. We show that there are infinitely many number fields of degree $D$ whose primitive elements all have relatively large height in terms of $b$, $D$ and the discriminant of the number field. This provides a negative answer to a questions of W. Ruppert from 1998 in the case when $D$ is composite. Conditional on a very weak form of a folk conjecture about the distribution of number fields, we negatively answer Ruppert's question for all $D>3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133