|
Mathematics 2014
Liouville Type Theorems for Two Mixed Boundary Value Problems with General NonlinearitiesAbstract: In this paper, we study the nonexistence of positive solutions for the following two mixed boundary value problems. The first problem is the mixed nonlinear-Neumann boundary value problem $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \\ \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\\ \displaystyle \\ \frac{\partial u}{\partial \nu}=0 &{\rm on}\quad \Gamma_0 \end{array} \right. $$ and the second is the nonlinear-Dirichlet boundary value problem $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \\ \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\\ \displaystyle \\ u=0 &{\rm on}\quad \Gamma_0, \end{array} \right. $$ where $\R=\{x\in \mathbb R^N:x_N>0\}$, $\Gamma_1=\{x\in \mathbb R^N:x_N=0,x_1<0\}$ and $\Gamma_0=\{x\in \mathbb R^N:x_N=0,x_1>0\}$. We will prove that these problems possess no positive solution under some assumptions on the nonlinear terms. The main technique we use is the moving plane method in an integral form.
|