全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Liouville Type Theorems for Two Mixed Boundary Value Problems with General Nonlinearities

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study the nonexistence of positive solutions for the following two mixed boundary value problems. The first problem is the mixed nonlinear-Neumann boundary value problem $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \\ \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\\ \displaystyle \\ \frac{\partial u}{\partial \nu}=0 &{\rm on}\quad \Gamma_0 \end{array} \right. $$ and the second is the nonlinear-Dirichlet boundary value problem $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \\ \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\\ \displaystyle \\ u=0 &{\rm on}\quad \Gamma_0, \end{array} \right. $$ where $\R=\{x\in \mathbb R^N:x_N>0\}$, $\Gamma_1=\{x\in \mathbb R^N:x_N=0,x_1<0\}$ and $\Gamma_0=\{x\in \mathbb R^N:x_N=0,x_1>0\}$. We will prove that these problems possess no positive solution under some assumptions on the nonlinear terms. The main technique we use is the moving plane method in an integral form.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133