全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

On consecutive primitive elements in a finite field

Full-Text   Cite this paper   Add to My Lib

Abstract:

For $q$ an odd prime power with $q>169$ we prove that there are always three consecutive primitive elements in the finite field $\mathbb{F}_{q}$. Indeed, there are precisely eleven values of $q \leq 169$ for which this is false. For $4\leq n \leq 8$ we present conjectures on the size of $q_{0}(n)$ such that $q>q_{0}(n)$ guarantees the existence of $n$ consecutive primitive elements in $\mathbb{F}_{q}$, provided that $\mathbb{F}_{q}$ has characteristic at least~$n$. Finally, we improve the upper bound on $q_{0}(n)$ for all $n\geq 3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133