全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

On the convergence to equilibrium of unbounded observables under a family of intermittent interval maps

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a family $\{ T_{r} \colon [0, 1] \circlearrowleft \}_{r \in [0, 1]}$ of Markov interval maps interpolating between the Tent map $T_{0}$ and the Farey map $T_{1}$. Letting $\mathcal{P}_{r}$ denote the Perron-Frobenius operator of $T_{r}$, we show, for $\beta \in [0, 1]$ and $\alpha \in (0, 1)$, that the asymptotic behaviour of the iterates of $\mathcal{P}_{r}$ applied to observables with a singularity at $\beta$ of order $\alpha$ is dependent on the structure of the $\omega$-limit set of $\beta$ with respect to $T_{r}$. Having a singularity it seems that such observables do not fall into any of the function classes on which convergence to equilibrium has been previously shown.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133