全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the problem of explicitly computing dimensions of spaces of automorphic or modular forms in level one, for a split classical group $\mathbf{G}$ over $\mathbb{Q}$ such that $\mathbf{G}(\R)$ has discrete series. Our main contribution is an algorithm calculating orbital integrals for the characteristic function of $\mathbf{G}(\mathbb{Z}_p)$ at torsion elements of $\mathbf{G}(\mathbb{Q}_p)$. We apply it to compute the geometric side in Arthur's specialisation of his invariant trace formula involving stable discrete series pseudo-coefficients for $\mathbf{G}(\mathbb{R})$. Therefore we explicitly compute the Euler-Poincar\'e characteristic of the level one discrete automorphic spectrum of $\mathbf{G}$ with respect to a finite-dimensional representation of $\mathbf{G}(\mathbb{R})$. For such a group $\mathbf{G}$, Arthur's endoscopic classification of the discrete spectrum allows to analyse precisely this Euler-Poincar\'e characteristic. For example one can deduce the number of everywhere unramified automorphic representations $\pi$ of $\mathbf{G}$ such that $\pi_{\infty}$ is isomorphic to a given discrete series representation of $\mathbf{G}(\mathbb{R})$. Dimension formulae for the spaces of vector-valued Siegel modular forms are easily derived.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133