全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Scaling asymptotics of heat kernels of line bundles

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a general Hermitian holomorphic line bundle $L$ on a compact complex manifold $M$ and let ${\Box}^q_p$ be the Kodaira Laplacian on $(0,q)$ forms with values in $L^p$. The main result is a complete asymptotic expansion for the semi-classically scaled heat kernel $\exp(-u{\Box}^q_p/p)(x,x)$ along the diagonal. It is a generalization of the Bergman/Szeg\"o kernel asymptotics in the case of a positive line bundle, but no positivity is assumed. We give two proofs, one based on the Hadamard parametrix for the heat kernel on a principal bundle and the second based on the analytic localization of the Dirac-Dolbeault operator.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133